Antimicrobial Investigation of CuO and ZnO Nanoparticles Prepared by a Rapid Combustion Method

Authors

  • Orhan Uzun Rectorate of Bartın University and also the Professor of Ankara University, Department of Physics
  • Recep Taş Department of Biotechnology, Bartın University
  • Shashanka Rajendrachari Shashanka R, Assistant Professor, Dept. of Metallurgical and Materials Engineering Bartin University
  • Yasemin Kamacı Bartın University, Department of Metallurgical and Materials Engineering
  • Yusuf Ceylan Department of Molecular Biology and Genetics, Bartın University
Abstract:

In recent years, fabrication of metal oxide nanoparticles is intensively gaining the interest of various chemists as well as biochemist due to their applications in different fields. Among all the transition metal oxides, CuO and ZnO are the important metal oxide nanoparticles exhibiting tremendous properties and a wide range of applications. Both CuO and ZnO nanoparticles were prepared by combustion method effectively with very less time. The combustion of copper (II) nitrate and urea at stoichiometric ratio results in CuO nanoparticles. Similarly, combustion of zinc (II) nitrate and urea at stoichiometric ratio results in ZnO nanoparticles. Both CuO and ZnO nanoparticles were characterized by X-ray diffraction to study the different phases present in them. Scanning electron microscopy (SEM) is used to study the microstructure and the composition of prepared metal oxide nanoparticles was studied by using energy dispersive spectroscopy attached to SEM. The optical studies were carried out by using UV-Visible spectrophotometer. Particle size analyzer is used to determine the mean average particle size of prepared metal oxide nanoparticles. CuO and ZnO NPs were applied to gram-negative and gram-positive bacteria using Minimum Inhibition Concentration (MIC) assay and demonstrated an essential antibacterial effect.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Morphology investigation of alumina nano-powders prepared by a sol-gel combustion method

Highly sinterable alumina nano-powders have been synthesized by a sol-gel combustion method with glycine asfuel. The preparation involved the thermal decomposition of a chelating agent (fuel)-nitrate gel and theformation of amorphous precursors. The nanopowders calcined at 1100°C were characterized by X-ray powderdiffraction (XRD) and Scanning Electron Microscopy (SEM). It was found that the ch...

full text

One Step Rapid Synthesis of Nano-Crystalline ZnO by Microwave-Assisted Solution Combustion Method

In this study nano-crystalline ZnO particles were synthesized by microwave-assisted solution combustion method. Zinc nitrate and urea were used as oxidizer and fuel, respectively. The effect of fuel to oxidizer (F/O) ratio on ZnO powder properties was investigated by using different urea/nitrate ratios. X-ray diffractometer, scanning electron microscopy and fourier transform infra-red were used...

full text

Structural characterization of ZnO and ZnO:Mn nanoparticles prepared by reverse micelle method

In this article, ZnO and ZnO:Mn nanoparticles prepared by reverse micelle method. The various crystalline properties of these nanoparticles such as size, d-spacing, strain, stress, dislocation density and texture coefficient have been calculated with the help of XRD spectrum. The XRD results indicated that the synthesized ZnO and ZnO:Mn nanoparticles have a pure wurtzite (hexagonal phase) struc...

full text

Structural characterization of ZnO and ZnO:Mn nanoparticles prepared by reverse micelle method

In this article, ZnO and ZnO:Mn nanoparticles prepared by reverse micelle method. The various crystalline properties of these nanoparticles such as size, d-spacing, strain, stress, dislocation density and texture coefficient have been calculated with the help of XRD spectrum. The XRD results indicated that the synthesized ZnO and ZnO:Mn nanoparticles have a pure wurtzite (hexagonal phase) struc...

full text

Rapid Synthesis of Silver Nanoparticles by a Marine-derived Fungus Aspergillus Niger and their Antimicrobial Potentials

Recently, biosynthesis of nanoparticles has received attention due to an increasing need of developing rapid, simple and ecofriendly protocol. Pathogenicity of some of the organisms and lengthy reaction are the drawbacks involved with biosynthesis. We describe a simple protocol for rapid synthesis of silver nanoparticles through biological route using a marine-derived fungus Aspergillus niger. ...

full text

The effect of molar ratio on structural and magnetic properties of BaFe12O19 nanoparticles prepared by sol-gel auto-combustion method

Nanocrystalline particles of barium hexaferrite has been prepared by the sol–gel auto- combustion method using iron and barium nitrate with a Ba:Fe molar ratio of 1:10. The effect of fuel such as citric acid and aspartic acid was investigated on the structure and magnetic properties of nanoparticles. The results revealed that the formation of barium hexaferritefine particles is influenced by mo...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 4

pages  799- 812

publication date 2019-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023